If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+a=10
We move all terms to the left:
3a^2+a-(10)=0
a = 3; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·3·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*3}=\frac{-12}{6} =-2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*3}=\frac{10}{6} =1+2/3 $
| -9u-2u-18=26 | | 6(y−10)=-30 | | 200m-75m+53,077=55,000-150m | | 3(4x+3=2x-5(3-x)+2 | | x/10=2=3 | | x^2+0.0000174x-0.00174=0 | | (11x+7)=(8x+2) | | 175m-75m+52800=55275-175m | | -6x-2(1-7x)=-8 | | -6x=15x-27 | | 12x+20+20x-35=7x | | z/8+1=1 | | x^2+1.74x10^-5x-1.74x10^-3=0 | | A6x-2(1-7x=-8 | | −19x+Q=−19x+P | | 2n^-9n+7=0 | | 10=2x+1+x | | 7/5u+2=1/2 | | x=5(x-5)(x+5)^2(x^2-49) | | 2^2-11x+24=0 | | 6s-4=8(2+1/2s) | | c*2+9c+14=0 | | 17+1.5x=28-6x | | -8/3x=5/3x-5/2 | | 6s-4=8(2+1/2s | | V-9/v+3=1/2 | | 4n^2+6n-24=0 | | (4x)(x+1)=1 | | x+134=55 | | -3(4x-13)=-(4x+17) | | 10•x=3/2 | | (x^2−x−68)^(4/3)=256 |